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Abstract. A poset is called upper homogeneous, or “upho,” if all of its principal
order filters are isomorphic to the whole poset. In previous work of the first author,
it was shown that each (finite type N-graded) upho lattice has associated to it a finite
graded lattice, called its core, which determines the rank generating function of the
upho lattice. In that prior work the question of which finite graded lattices arise as
cores was explored. Here, we study the question of in how many different ways a
given finite graded lattice can be realized as the core of an upho lattice. We show that
if the finite lattice has no nontrivial automorphisms, then it is the core of finitely many
upho lattices. We also show that the number of ways a finite lattice can be realized as
a core is unbounded, even when restricting to rank-two lattices.

1 Introduction

A poset P is called upper homogeneous, or upho, if for every p ∈ P , the principal order
filter Vp = {q ∈ P : q ≥ p} is isomorphic to the original poset P . This class of in-
finite, self-similar posets was introduced a few years ago by Stanley [13, 14], and has
subsequently been studied by a number of authors [6, 7, 9, 5].

In [7, 8, 9], the first author explained how each (finite type N-graded) upho lattice
has associated to it a finite graded lattice which controls many features of the upho
lattice. More precisely, for an upho lattice L, its core is L := [0̂, s1 ∨ · · · ∨ sr], the interval
from the minimum 0̂ to the join of its atoms s1, . . . , sr. We have F(L; x) = χ∗(L; x)−1

where F(L; x) is the rank generating function of the upho lattice L and χ∗(L; x) is the
(reciprocal) characteristic polynomial of its core L. So the core determines how quickly
the upho lattice grows.

In [9], the question of which finite graded lattices are cores of upho lattices was
explored. It was shown that this is a very subtle question: many well-studied finite
lattices are cores, but many also are not. In general, it is unclear how one can determine
if a given finite lattice is the core of some upho lattice.

Importantly, the core does not determine the upho lattice, in the sense that the same
finite lattice can be the core of multiple upho lattices: e.g., the rank-two Boolean lattice is
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the core of two different upho lattices, as shown in Figure 1. Here we study the question
of in how many different ways a given finite lattice can be realized as a core. In a sense,
we study whether an upho lattice can be represented by a finite amount of data.

Specifically, for a finite graded lattice L, let κ(L) be the number of different upho
lattices of which L is a core. We are interested in the behavior of the function κ(L).
We will see that the way this function behaves is also quite subtle: in some ways, this
function is “small”; in other ways, it is “big.”

Concerning the “smallness” of κ(L), our first major results says that if the finite lat-
tice L has no nontrivial automorphisms, then κ(L) is finite. This result suggests that κ(L)
may always finite for all finite lattices L. But we currently cannot rule out the possibility
that κ(L) is infinite, even uncountably infinite, for some finite lattice L with a nontrivial
automorphism.

Concerning the “bigness” of κ(L), our second major result says that this function is
unbounded. Actually, as soon as we know there is one lattice L with κ(L) > 1, a simple
product construction implies that κ(L) is unbounded. But we show, what is much less
trivial, that κ(L) is unbounded even when restricting to lattices L of rank two. There is a
unique rank-two graded lattice with n atoms, denoted Mn, and we show more precisely
that for each n ≥ 2, κ(Mn) ≥ p(n), where p(n) is the number of integer partitions of n.

In the proof of both of our major results, monoids are used in an essential way.
Previous work [6, 9, 5] highlighted the close connection between monoids and upho
posets; the key observation is that each (homogeneously finitely generated) left cancella-
tive monoid gives rise to an upho poset.

An intriguing open question is whether every upho lattice (or even every upho poset1)
comes from a monoid in this way. If so, it would mean that this order-theoretic definition
has intrinsic algebraic content. It would also imply the finiteness of κ(L) for all finite
lattices L, and might lead to an algorithm for listing all upho lattices of which L is a core.
We discuss some speculations along these lines in the final section.

This is an extended abstract summarizing our work; for a complete version, see [10].
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2 Background on upho posets and monoids

We follow standard terminology for posets as laid out for instance in [12, Chapter 3].
Let P = (P,≤) be a poset. We use 0̂ and 1̂ to denote the minimum and maximum of P
when they exist. We use ⋖ for the cover relation of P. An atom of P is an element s ∈ P
with 0̂ ⋖ s. We routinely work with both finite and infinite posets, so from now on we
use the convention that normal script letters (like P and L) denote finite posets while
calligraphic letters (like P and L) denote infinite posets.

A finite poset P is graded if we can write it as a disjoint union P = P0 ⊔ P1 ⊔ · · · ⊔ Pn
such that every maximal chain in P is of the form 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xn = 1̂ with xi ∈ Pi.
In this case, we say the poset has rank n, and the poset’s rank function ρ : P → {0, 1, . . . , n}
is given by ρ(x) = i if x ∈ Pi. The rank generating and (reciprocal) characteristic polynomials
of such a P are then defined to be

F(P; x) := ∑
p∈P

xρ(p) ; χ∗(P; x) := ∑
p∈P

µ(0̂, p) xρ(p) ,

where as usual µ(·, ·) is the Möbius function of P. For example, the Boolean lattice Bn of
subsets of [n] := {1, . . . , n} is graded with F(Bn; x) = (1 + x)n and χ∗(Bn; x) = (1 − x)n.

We use N := {0, 1, 2, . . .} for the natural numbers. An infinite poset P is N-graded
if we can write it as a disjoint union P = P0 ⊔ P1 ⊔ · · · such that every maximal chain
in P is of the form 0̂ = x0 ⋖ x1 ⋖ · · · with xi ∈ Pi. In this case, the poset’s rank function
ρ : P → N is given by ρ(x) = i if x ∈ Pi. We say such a P is finite type N-graded
if #Pi < ∞ for all i. The rank generating and characteristic generating functions of such a P
are then defined to be

F(P ; x) := ∑
p∈P

xρ(p) ; χ∗(P ; x) := ∑
p∈P

µ(0̂, p) xρ(p) .

E.g., Nn is finite type N-graded with F(Nn; x) = 1
(1−x)n and χ∗(Nn; x) = (1 − x)n.

As mentioned in the introduction, a poset P is upper homogeneous, or upho, if for
each element p ∈ P , the corresponding principal order filter Vp := {q ∈ P : q ≥ p} is
isomorphic to P . To avoid trivialities, we assume all upho posets have at least two
elements; then they must be infinite. In order to able to apply the tools of enumerative
and algebraic combinatorics to study them, all upho posets are assumed finite type
N-graded from now on. For example, Nn is an upho lattice.

As observed previously by the first author, upho posets have an interesting symmetry
regarding their rank and characteristic generating functions.

Theorem 1 ([7, Theorem 1]). For an upho poset P , F(P ; x) = χ∗(P ; x)−1.

For lattices, we can say more. For an upho lattice L, its core is L := [0̂, s1 ∨ · · · ∨ sr],
the interval from its minimum 0̂ to the join of its atoms s1, . . . , sr. Notice that the core of
an upho lattice is a finite graded lattice. An easy corollary of Theorem 1 is:
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Corollary 2 ([7, Corollary 6]). For an upho lattice L with core L, F(L; x) = χ∗(L; x)−1.

So Corollary 2 says the core of an upho lattice determines how quickly it grows. For
instance, Nn is an upho lattice with core Bn, and we see F(Nn; x) = 1

(1−x)n = χ∗(Bn; x)−1.
The core does not completely determine the upho lattice, in the sense that a given

finite graded lattice can be the core of multiple different upho lattices. For example,
there are two different upho lattices with core B2, depicted in Figure 1.

For a finite graded lattice L, let κ(L) denote the cardinality of the set of different
upho lattices with core L. Our main interest here is in understanding the function κ(L).
A priori κ(L) could be infinite, even uncountably infinite, for some L. But we will
provide some reasons to think κ(L) should be finite for all L.

An important source of upho posets are monoids, as has been observed previously
in [6, 9, 5]. Let us review the connection. For basics on monoids, consult, e.g., [4, 3].

Let M = (M, ·) be a monoid. Say that M is left cancellative if ab = ac implies that b = c
for a, b, c ∈ M. Left cancellativity is a version of upper homogeneity. But we also need to
enforce our finiteness requirements. Let us say that M is homogeneously finitely generated if
it has a presentation M = ⟨S | R⟩ where the set S of generators is finite and where every
relation in R is homogeneous, i.e., of the form w = w′ with ℓ(w) = ℓ(w′), where ℓ(w)
denotes the length of the word w. Finally, we use ≤L to denote the left divisibility relation
on M: a ≤L b for a, b ∈ M means that b = ac for some c ∈ M. With all this terminology,
we have the following result:

Lemma 3 ([6, Lemma 5.1]; see also [9, 5]). Let M be a homogeneously finitely generated, left
cancellative monoid. Then P := (M,≤L) is a (finite type N-graded) upho poset.

For example, the free commutative monoid ⟨x1, . . . , xn : xixj = xjxi⟩ satisfies the con-
ditions of Lemma 3, and gives us the upho lattice Nn.

3 Colorable upho posets, automorphisms, and finiteness

In this section we focus on proving that κ(L) is finite. Our major result says that κ(L) is
finite when the finite lattice L has no nontrivial automorphisms. We use the connection
to monoids to prove this result.

It is helpful to recast the monoid construction of upho posets in a slightly more
combinatorial framework (c.f. [5, §3]). An upho coloring of a finite type N-graded poset P
is a function c that maps each cover relation of P to an atom of P , such that:

• c(0̂ ⋖ s) = s for every atom s ∈ P , and

• for each p ∈ P , there is an isomorphism φp : Vp → P which preserves the coloring
in the sense that c(φp(x)⋖ φp(y)) = c(x ⋖ y) for all x ⋖ y ∈ Vp.
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Of course, if P has an upho coloring c, then it is an upho poset. Let us call a P together
with such a c a colored upho poset, and call an upho poset P colorable if it admits such a c.

The colorable upho posets are exactly those coming from monoids.

Lemma 4 ([5, Corollary 1]). There is a bijective correspondence between homogeneously finitely
generated, left cancellative monoids M and colored upho posets P . Given such a monoid M, we
let P = (M,≤L) as in Lemma 3, with the coloring given by c(x ⋖ y) = s if y = xs. Conversely,
given such a colored upho poset P , the associated monoid M has presentation

M =

〈
s1, . . . , sr : c(0̂ = x0 ⋖ x1)c(x1 ⋖ x2) · · · c(xk−1 ⋖ xk = p) =

c(0̂ = y0 ⋖ y1)c(y1 ⋖ y2) · · · c(yk−1 ⋖ yk = p)

〉

where the generators are the atoms s1, . . . , sr of P , and the relations correspond to all pairs of
saturated chains 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xk = p, 0̂ = y0 ⋖ y1 ⋖ · · ·⋖ yk = p from 0̂ to any p ∈ P .

In the case of lattices, we can substantially reduce the set of relations we need.

Lemma 5. Let L be a colored upho lattice. Then the monoid M associated to it by Lemma 4 is

M =

〈
s1, . . . , sr : c(0̂ = x0 ⋖ x1)c(x1 ⋖ x2) · · · c(xk−1 ⋖ xk = x1 ∨ y1) =

c(0̂ = y0 ⋖ y1)c(y1 ⋖ y2) · · · c(yk−1 ⋖ yk = x1 ∨ y1)

〉

where the generators are the atoms s1, . . . , sr of L, and the relations correspond to all pairs of
saturated chains 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xk = x1 ∨ y1, 0̂ = y0 ⋖ y1 ⋖ · · ·⋖ yk = x1 ∨ y1 from 0̂ to
the join x1 ∨ y1 of two atoms x1, y1 of L.

Lemma 5 says that the coloring of a colored upho lattice L is completely determined
by the way that its core L is colored. From this we immediately conclude:

Corollary 6. Each finite graded lattice L is the core of finitely many colorable upho lattices L.

But how to construct upho colorings? Let P be an upho poset. A system of isomor-
phisms for P is a collection of isomorphisms φp : Vp → P for each p ∈ P . Note that, by
definition of upper homogeneity, a system of isomorphisms for P exists. Let us say that
a system of isomorphisms is compatible if

φq = φφp(q) ◦ (φp
∣∣
Vq
) (3.1)

for each p ≤ q ∈ P . Compatible systems of isomorphisms give us upho colorings.

Lemma 7. An upho poset P is colorable if and only if it has a compatible system of isomorphisms.
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s1 s2 s1 s2

Figure 1: Two different (colored) upho lattices with core B2: see Examples 8 and 9.

Proof. Given a colored upho poset P , the system of isomorphisms certifying that its
coloring c is upho must be compatible. Conversely, given a compatible system of iso-
morphisms φp for P , the coloring c(x ⋖ y) := φx(y) is upho.

Example 8. Let n ≥ 1 and let L = Nn. Then L is an upho lattice, with core Bn, and a
compatible system of isomorphisms is φ(x1,...,xn)(y1, . . . , yn) = (y1 − x1, . . . , yn − xn). The
corresponding monoid is M = ⟨s1, . . . , sn : sisj = sjsi for 1 ≤ i < j ≤ n⟩. For n = 2, the
colored upho lattice L is depicted on the left in Figure 1.

Example 9. Let n ≥ 1 and let L = {finite S ⊆ {1, 2, . . .} : max(S) < #S + n} (with the
convention max(∅) = 0), partially ordered by inclusion. Then L is another upho lattice
with core Bn (see [7, Remark 8] and [9, §3.5.1]). A compatible system of isomorphisms
is φS(T) = fS(T \ S) where fS : {1, 2, . . .} \ S → {1, 2, . . .} is the order-preserving bijec-
tion. The corresponding monoid is M = ⟨s1, . . . , sn : sisj−1 = sjsi for 1 ≤ i < j ≤ n⟩.
For n = 2, the colored upho lattice L is depicted on the right in Figure 1.

Remark 10. The upho lattices from Example 9 belong to a more general construction for
any uniform sequence of supersolvable geometric lattices; see [9, §3]. These sequences include
not just Boolean lattices, but also subspace lattices, partition lattices, etc. The condi-
tions which go into the definition of “uniform sequence” imply the resulting systems of
isomorphisms are compatible. So, all the upho lattices in [9, §3] come from monoids.

When can we guarantee that an upho poset P has a compatible system of isomor-
phisms? Notice that if (3.1) fails for some p ≤ q ∈ P , then the left-hand and right-hand
sides are two different isomorphisms Vq → P . Composing one of these isomorphisms
with the inverse of the other would then yield a nontrivial automorphism P → P . So:

Corollary 11. If an upho poset P has no nontrivial automorphisms, then it is colorable.

To finish the proof of our first main result, we need the following observation.

Lemma 12. If a finite graded lattice L has no nontrivial automorphisms, then any upho lattice L
of which it is the core also has no nontrivial automorphisms.
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Putting everything together, we have our main result of this section.

Theorem 13. Let L be a finite graded lattice which has no nontrivial automorphisms. Then L is
the core of finitely many upho lattices, i.e., κ(L) is finite.

Remark 14. For many classes of finite, combinatorial structures, “most” members have
no nontrivial automorphisms, in the sense that the proportion of such structures on [n]
with a nontrivial automorphism goes to 0 as n → ∞. This is known to be true for
finite graphs, and for finite posets, and we suspect it is true for finite lattices as well.
Hence, Theorem 13 should apply to most lattices L. But on the other hand, we also
expect κ(L) = 0 for most L. So it is reasonable to ask whether there are L to which
Theorem 13 applies but for which we also know κ(L) > 0. We provide an infinite
sequence of such L, with ranks going to infinity, in the following Example 15.

Example 15. In [9, §4.3.1] it is explained that the weak order of any finite Coxeter
group W is the core of an upho lattice, the classical braid monoid (which is an upho lattice
because it is a Garside monoid [4, 3]). For any Dynkin diagram that has no “∞” la-
bels, the automorphisms of weak order are exactly the Dynkin diagram automorphisms
(see [1, Corollary 3.2.6]). Thus, with L the weak order of the type Bn Coxeter group
for n > 2, L has no nontrivial automorphisms and κ(L) > 0.

4 Rank-two cores

In this section we explore rank-two cores. rank-one cores are trivial: the only rank-one
lattice is the two element chain, and it is the core of a unique upho lattice, N. But already
rank-two cores are quite interesting. For each n ≥ 1, there is a unique rank-two lattice
with n atoms, denoted2 Mn. (In particular, M2 = B2.) Our major result in this section is
that κ(Mn) ≥ p(n), the number of integer partitions of n, for each n ≥ 2. Along the way
we also show that κ(M2) = 2; in fact, this is the only nontrivial finite lattice where we
completely understand all the ways it can be realized as a core of an upho lattice.

Fix n ≥ 2. We start by describing two different recursive constructions that produce
upho lattices L with core Mn. In both constructions we will build up a sequence of finite
posets P0 ⊆ P1 ⊆ · · · , with Pi of rank i, and then set L := limi→∞ Pi.

The first construction we call the dominating vertex construction. We start by setting P0
to be the one-element poset. Then, for each i ≥ 1, we obtain Pi from Pi−1 by doing the
following:

• we append a new element which covers all the elements of rank i − 1;

• then for each element p of rank i− 1, we also append n− 1 additional new elements
covering only p.

2Please do not associate the “M” in the lattice Mn with “monoid;” it stands rather for “modular.”
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Figure 2: On the left, the dominating vertex construction of an upho lattice with
core M3; and on the right, the flip construction of an upho lattice with core M3.

We call this the dominating vertex construction because of the element of rank i which
covers (“dominates”) all elements of rank i − 1. It is clear that P0 ⊆ P1 ⊆ · · · , with Pi
of rank i, so that we can define L := limi→∞ Pi to be the result of this construction. For
example, the left side of Figure 2 depicts this result in the case of n = 3.

The second construction we call the flip construction. We start by setting P0 to be the
one-element poset and P1 to be the “claw” poset with minimum 0̂, n atoms, and no other
elements. Then, for each i ≥ 2, we obtain Pi from Pi−1 by doing the following:

• for each element p of rank i − 2, letting q1, . . . , qn be the elements of rank i − 1
covering p, we append a new element which covers exactly q1, . . . , qn;

• then for each element p of rank i − 1, we also append enough additional new
elements covering only p to make p be covered by exactly n elements.

We call this the flip construction because the first step can be seen as taking the portion
of the Hasse diagram between ranks i − 2 and i − 1 and placing a reflected copy above it.
It is again clear that P0 ⊆ P1 ⊆ · · · , with Pi of rank i, so that we can define L := limi→∞ Pi
to be the result of this construction. For example, the right side of Figure 2 depicts this
result in the case of n = 3.

Theorem 16. For any n ≥ 2, the dominating vertex and flip constructions produce two different
upho lattices with core Mn.

We also are able to show, essentially by a counting argument, that if an upho lattice
agrees with either of these constructions up to rank three, it agrees forever.

Theorem 17. Let L be an upho lattice with core Mn for some n ≥ 2. Then if L agrees with the
result of the dominating vertex construction up to rank three, in fact L must be the result of the
dominating vertex construction, and similarly for the flip construction.

Remark 18. From Theorem 17 one can deduce that, for any n ≥ 2, the flip construction
produces the only modular upho lattice with core Mn.
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These two constructions yield all possible upho lattices with core M2.

Corollary 19. The only upho lattices with core M2 are those produced by the dominating vertex
and flip constructions; they are depicted in Figure 1. Hence, κ(M2) = 2.

However, for n ≥ 3, there are more possibilities beyond these two for upho lattices
with core Mn. In order to understand these possibilities, we need to return to monoids.
The following theorem gives us a rich source of upho lattices with core Mn.

Theorem 20. Let n ≥ 2 and let f : [n] → [n] be any function. Define the homogeneously finitely
generated monoid M( f ) by

M( f ) = ⟨x1, . . . , xn : x1x f (1) = x2x f (2) = · · · = xnx f (n)⟩.
Then M( f ) is left cancellative, and any two elements in M( f ) have a least common right multi-
ple. Hence, L( f ) := (M( f ),≤L) is an upho lattice, with core Mn.

Remark 21. In Theorem 20, choosing an f : [n] → [n] which is a bijection yields the result
of the flip construction for L( f ), while choosing an f which has image of size one yields
the result of the dominating vertex construction for L( f ). These are the “extreme” cases.

To prove that the monoid M( f ) in Theorem 20 is left cancellative, we use the follow-
ing simple lemma.

Lemma 22. Let M = ⟨S | R⟩ be a homogeneously finitely generated monoid such that for each
generator s ∈ S, there is at most one word w that begins with s which appears in the relations
in R. Then M is left cancellative.

To prove that the monoid M( f ) in Theorem 20 has least common multiples, we use
a variant of [2, Lemma 2.1], which says that this lattice property can be checked locally.

To finish the proof of our main result in this section, we need to think about when
different functions f : [n] → [n] yield different upho lattices L. As we have seen in
Remark 21, what matters are the fiber sizes of f . More precisely, we have the following.

Lemma 23. Let n ≥ 2. For an integer partition λ ⊢ n, define fλ : [n] → [n] by letting

fλ(1) = fλ(2) = · · · = fλ(λ1) = λ1,
fλ(λ1 + 1) = fλ(λ1 + 2) = · · · = fλ(λ1 + λ2) = λ1 + λ2,

fλ(λ1 + λ2 + 1) = fλ(λ1 + λ2 + 2) = · · · = fλ(λ1 + λ2 + λ3) = λ1 + λ2 + λ3,

and so on. (So fλ is idempotent, and λ is the partition of the fiber sizes.) Then, with the notation
of Theorem 20, L( fλ) is isomorphic to L( fν) for two partitions λ, ν ⊢ n if and only if λ = ν.

Theorem 20 and Lemma 23 together establish our main result of this section.

Theorem 24. For any n ≥ 2, we have κ(Mn) ≥ p(n), the number of integer partitions of n.

Remark 25. While we have seen that κ(M2) = 2, it remains possible that κ(Mn) is infinite
for some n ≥ 3, even possibly for n = 3. Indeed, the Mn have nontrivial automorphisms,
so Theorem 13 does not apply.
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5 Listing all the ways a finite lattice can be a core

By now we see that the following question is central to understanding all the ways a
given finite lattice can be realized as a core.

Question 26. Does every upho lattice come from a monoid; i.e., in the language of Section 3, is
every upho lattice colorable?

We are not sure whether we should expect a positive answer to Question 26, but
suppose for the moment that it had one. Then from Corollary 6 it would immediately
follow that κ(L) is finite for all finite graded lattices L. But it would still not be clear how
to list all the upho lattices of which L is a core. In this section, we speculate about how
one could devise an algorithm for listing all the (colored) upho lattices of which a given
finite lattice is a core.

Let L be a finite graded lattice for which 1̂ is the join of the atoms. A pre-upho coloring
of L is a function c that maps each cover relation of L to an atom of L, such that:

• c(0̂ ⋖ s) = s for every atom s ∈ L;

• for each x ∈ L \ {0̂, 1̂}, letting y1, . . . , yk be the elements covering x, there is a rank-
and color-preserving embedding of the interval [x, y1 ∨ · · · ∨ yk] into L.

(By an embedding of P into Q we mean a map φ : P → Q which is an isomorphism
onto its image; that it is rank-preserving means ρ(φ(p)) = ρ(p) for all p ∈ P; that it is
color-preserving means c(φ(x)⋖ φ(y)) = c(x ⋖ y) for all x ⋖ y ∈ P.)

The following is a colored version of [9, Lemma 5.11].

Lemma 27. Let L be an upho lattice with core L. Let c be an upho coloring of L. Then c restricts
to a pre-upho coloring of L.

So in order for L to be the core of some colored upho lattice, it must have a pre-upho
coloring. What about the converse? Does a pre-uhpo coloring of L give us a colored
upho lattice of which L is the core? We speculate about this in the following conjecture.

Conjecture 28. Let L be a finite graded lattice for which 1̂ is the join of the atoms. Let c be a
pre-upho coloring of L. Define the monoid M by

M =

〈
s1, . . . , sr : c(0̂ = x0 ⋖ x1)c(x1 ⋖ x2) · · · c(xk−1 ⋖ xk = x1 ∨ y1) =

c(0̂ = y0 ⋖ y1)c(y1 ⋖ y2) · · · c(yk−1 ⋖ yk = x1 ∨ y1)

〉

where the generators are the atoms s1, . . . , sr of L, and the relations correspond to all pairs of
saturated chains 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xk = x1 ∨ y1, 0̂ = y0 ⋖ y1 ⋖ · · ·⋖ yk = x1 ∨ y1 from 0̂ to
the join x1 ∨ y1 of two atoms x1, y1 of L. Then M is left cancellative, and every pair of elements
in M has a greatest common left divisor. Hence L := (M,≤L) is an upho meet semilattice, and
there is a rank-preserving embedding of L into L.
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s1 s2 s3 s1 s2 s3

Figure 3: Inputting the coloring of the lattice L on the left into Conjecture 28 yields an
upho lattice L whose core, depicted on the right, is bigger than L.

s1 s2 s1 s2

Figure 4: Inputting the coloring of the hexagon lattice L on the left into Conjecture 28
yields the upho meet semilattice L on the right, which is not a lattice (c.f. [14, Figure 1]).

Verifying that a coloring of a finite lattice L is pre-upho is clearly a finite check.
Hence, Conjecture 28, if correct, would almost give an algorithm for listing all the col-
ored upho lattices of which a given finite lattice L is a core. However, there are a few
deficiencies in this conjecture, as we now explain.

First of all, the conjecture only guarantees that there is a rank-preserving embedding
of L into L. This means that L sits inside the core of L, but the core could potentially be
bigger than just L. Indeed, Figure 3 shows an example where the core of the output L
is strictly bigger than the input L. But this is not such a serious problem for our desired
algorithm, as we can check that the core of any output L is really L just by looking at a
finite portion of L.

Another issue with Conjecture 28 is that it only guarantees that L is a meet semilat-
tice: it may fail to be a lattice because pairs of elements may fail to have upper bounds.
Indeed, Figure 4 shows an example where the output L is not a lattice. This is a more
serious problem, because checking that upper bounds exist is a priori an infinite check.

Finally, different monoids M may lead to isomorphic upho lattices L, so if we wanted
our algorithm to list each upho lattice only once, we would have to check for isomor-
phisms, which again is a priori an infinite check.
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To conclude, we note that the construction in Conjecture 28 feels spiritually similar to
a known construction of Garside monoids from colored finite lattices discussed in [11].
Hence, techniques from Garside theory [4, 3] might be useful for proving this conjecture.
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