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Section 1

Posets and generating functions
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Posets and generating functions

Poset basics

A poset (P,≤) is a set with a partial order satisfying the usual axioms.

We represent posets by their Hasse diagrams:

P = {a ≤ b, c ≤ d} =

a

b c

d

The edges of the Hasse diagram are given by the cover relations x ⋖ y ,
meaning x < y and there is no z ∈ P with x < z < y .

We will consider both finite and infinite posets, but all posets will be at
least locally finite, meaning intervals [x , y ] = {z : x ≤ z ≤ y} are finite.

We use normal P for finite posets and caligraphic P for infinite posets.

Sam Hopkins Upho posets March 24th, 2024 3 / 34



Posets and generating functions

Finite graded posets and their generating polynomials

A finite poset P is graded (of rank n) if P = P0 ⊔ P1 ⊔ · · · ⊔ Pn where
every maximal chain in P is of the form x0 ⋖ x1 ⋖ · · ·⋖ xn with xi ∈ Pi .
The rank of p ∈ Pi is ρ(p) = i . The rank generating polynomial of P is

F (P; x) =
n∑

i=1

#Pi x
i =

∑
p∈P

xρ(p).

P0

P1

P2

⇒ F (P; x) = 1 + 2x + x2 = (1 + x)2

If P has a minimum 0̂, its (reciprocal) characteristic polynomial is

χ(P; x) =
∑
p∈P

µ(0̂, p) xρ(p),

where µ(·, ·) is the Möbius function of P.
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Posets and generating functions

Möbius functions

The Möbius function µ(x , y) for x ≤ y ∈ P can be defined recursively by

µ(x , x) = 1 and µ(x , y) = −
∑

x≤z<y

µ(x , z) if x < y .

0̂µ(0̂, p) +1

−1 −1

+1

⇒ χ(P; x) = 1− 2x + x2 = (1− x)2

The Möbius function µ is significant for many reasons:

The Euler characteristic of the order complex of [x , y ] is µ(x , y).

In incidence algebra of P, µ = ζ−1 where ζ(x , y) = 1 for all x ≤ y .

Möbius inversion: f (x) =
∑

y≥x g(y) ⇔ g(x) =
∑

y≥x µ(x , y) f (y).
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Posets and generating functions

Graded poset examples: Boolean and partition lattices

Bn = Boolean lattice of subsets of
[n] = {1, 2, . . . , n} under inclusion:

B2
∅

{1} {2}

{1, 2}

F (Bn; x) =
n∑

k=0

(
n

k

)
xk = (1 + x)n,

χ(Bn; x) =
n∑

k=0

(−1)k
(
n

k

)
xk= (1− x)n,

with
(n
k

)
the binomial coefficients.

Πn = partition lattice of set
partitions of [n] under refinement:

Π3

1 | 2 | 3

1 | 23
12 | 3

13 | 2

123

+1

−1
−1

−1

+2

F (Πn; x) =
n∑

k=0

S(n, n − k)xk ,

χ(Πn; x)=
n∑

k=0

s(n, n − k)xk=
n−1∏
i=1

(1− ix),

with S(n, k) & s(n, k) the Stirling
numbers of 2nd & 1st kind.
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Posets and generating functions

Infinite graded posets and their generating functions

We now do something similar for certain infinite posets P modeled on the
natural numbers N = {0, 1, 2, . . .}.

An infinite poset P is N-graded if P = P0 ⊔ P1 ⊔ P2 · · · where every
maximal chain in P is of the form x0 ⋖ x1 ⋖ x2 ⋖ · · · with xi ∈ Pi .

We say P is finite type N-graded if #Pi < ∞ for all i , in which case its
rank generating function is

F (P; x) =
∑
i≥0

#Pi x
i =

∑
p∈P

xρ(p),

where as before the rank of p ∈ Pi is ρ(p) = i .

If P has a minimum 0̂, its characteristic generating function is

χ(P; x) =
∑
p∈P

µ(0̂, p) xρ(p).
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Posets and generating functions

Infinite graded poset examples: N2 and Young’s lattice

Consider P = N2:

0̂ = (0, 0)

(1, 0) (0, 1)

(2, 0)

(1, 1)

(0, 2)

+1

−1 −1

0
+1

0

0 0 0 0

F (N2; x) =
∑
n≥0

(n + 1) xn =
1

(1− x)2
,

χ(N2; x) = 1− 2x + x2 = (1− x)2.

Consider P = Y, Young’s lattice
of integer partitions:

0̂ = ∅
+1

−1

0 0

0 0 0

F (Y; x) =
∑
n≥0

p(n) xn =
∏
i≥1

1

(1− x i )
,

χ(Y; x) = 1− x ,

where p(n) = # partitions λ ⊢ n.
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Upho posets

Section 2

Upho posets
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Upho posets

Upho posets

A poset P is upper homogeneous, or “upho,” if for every p ∈ P the
principal order filter Vp = {q : q ≥ p} is isomorphic to whole poset P.
Looking up from each p ∈ P, we see another copy of P:

P
p

P

Examples of upho posets:

the natural numbers N, nonnegative rational numbers Q≥0, and
nonnegative real numbers R≥0 (all with their usual total orders);

the finite subsets of any infinite set X (ordered by inclusion).

Because we want to do combinatorics, from now on all upho posets are
assumed finite type N-graded. Of above, only N is finite type N-graded.
Since P, Q upho implies P ×Q upho, Nn is upho for any n ≥ 1.
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Upho posets

Aside: planar upho posets and chain counting

If instead of writing µ(0̂, p) on each p ∈ N2, we write the number of
maximal chains from 0̂ to p, we get Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

Stanley recently introduced upho posets because he was interested in
certain analogs of Pascal’s triangle coming from other planar upho posets:

1

1 1 1

1 1 2 1 2 1 1

Stern poset

1

1 1

1 1 1 1

1 1 1 2 1 1 1

Fibonacci poset
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Upho posets

More upho examples: binary tree poset, “necktie” poset

Consider P = the binary tree poset:

+1

−1 −1

0 0 0 0

F (P; x) =
∑
n≥0

2n xn =
1

1− 2x
,

χ(P; x) = 1− 2x .

Consider P = the “necktie” poset:

+1

−1 −1

+1 +1

−1 −1

F (P; x) = 1 +
∑
n≥1

2 xn =
1 + x

1− x
,

χ(P; x) = 1 +
∑
n≥1

(−1)n2 xn =
1− x

1 + x
.

An atom is an element of rank one. These posets have two atoms, like N2.
They have obvious generalizations to any number r ≥ 2 of atoms, like Nr .

Sam Hopkins Upho posets March 24th, 2024 12 / 34



Upho posets

Rank & characteristic generating functions of upho poset

From the examples of rank and characteristic generating functions of upho
posets we have seen so far, it is not hard to guess the following:

Theorem (H. 2022)

For any upho poset P, we have F (P; x) = χ(P; x)−1.

Proof.

For p ∈ P, let f (p) =
∑

q≥p x
ρ(q). By Möbius inversion,

1 = xρ(0̂) =
∑
p≥0̂

µ(0̂, p)
∑
q≥p

xρ(q) =
∑
p∈P

µ(0̂, p) xρ(p) F (P; x) = χ(P; x) · F (P; x),

where we used
∑

q≥p x
ρ(q) = xρ(p) F (P; x) from the upho-ness of P.

Unfortunately, Gao–Guo–Seetharaman–Seidel 2022 showed that there are
uncountably many rank generating functions of upho posets!
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Upho posets

Lattices and their Möbius functions

Recall that a poset P is a lattice if every pair of elements x , y ∈ P have a
meet (greatest lower bound) x ∧ y and a join (least upper bound) x ∨ y :

x ∧ y

x y

x ∨ y

Lattices have well-behaved Möbius functions:

Theorem (Rota’s cross-cut theorem)

Let L be a finite lattice with minimum 0̂, maximum 1̂, and set of atoms S .
Then

µ(0̂, 1̂) =
∑

T⊆S,
∨

T=1̂

(−1)#T .

In particular, µ(0̂, 1̂) = 0 if 1̂ is not the join of the atoms of L.
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Upho posets

Upho lattices and their cores

Let L be an upho lattice. Let L = [0̂, s1 ∨ · · · ∨ sr ] be the interval from its
minimum 0̂ to the join of its atoms s1, . . . , sr , which we call the core of L:

L = N2 L = B2

Corollary

Let L be an upho lattice with core L. Then F (L; x) = χ(L; x)−1.

For example, the core of Nn is Bn, and F (Nn; x) = 1
(1−x)n = χ(Bn; x)

−1.

Notice that this corollary implies there are only countably many rank
generating functions of upho lattices, unlike with arbitrary upho poset.
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Upho posets

The main question

The core does not determine the upho lattice completely. In other words,
there are different upho lattices which have the same core.

Nevertheless, a classification of upho lattices must start with an answer to:

Question

Which finite graded lattices L arise as cores of upho lattices?

For example, we saw that the Boolean lattice Bn is a core for any n ≥ 1.

This can be thought of as a “tiling” problem: our goal is to tile an infinite,
fractal lattice L with a given finite lattice L, or show no tiling is possible.

In what remains, we will provide both positive and negative answers to
this question, showing that it is quite subtle.
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Examples of cores of upho lattices

Section 3

Examples of cores of upho lattices
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Examples of cores of upho lattices

The Boolean lattice as a core, again

Fix k ≥ 1 and let L = {finite subsets A ⊆ {1, 2, . . .} : max(A) < #A+ k}
(with max(∅) = 0), ordered by inclusion.

k = 2

B2

∅

{1} {2}

{1, 3} {1, 2} {2, 3}

{1, 3, 4} {1, 2, 4} {1, 2, 3} {2, 3, 4}

This L is an upho lattice with core L = Bk , but it is not isomorphic to Nk .
These are the simplest examples of two upho lattices with the same core.
Notice that F (L; x) =

∑
n≥0

(n+k−1
n

)
xn = 1

(1−x)k
= χ(Bk ; x)

−1.
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Examples of cores of upho lattices

The partition lattice as a core

Fix k ≥ 1. Let L be the set partitions of [n] (for any n ≥ k) into k blocks,
ordered by refinement: π ≤ π′ if for all B ∈ π there’s B ′ ∈ π′ with B ⊆ B ′.

k = 2
Π3

1|2

1|23 12|3 13|2

1|234 14|23 12|34 123|4 124|3 13|24 134|2

1|2345 15|234 14|235 145|23 12|345 125|34 123|45 1234|5 1235|4 124|35 1245|3 13|245 135|24 134|25 1345|2

This L is an upho lattice with core L = Πk+1. Notice that

F (L; x) =
∑
n≥k

S(n, k)xn−k =
1

(1− x)(1− 2x) · · · (1− kx)
= χ(Πk+1; x)

−1.
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Examples of cores of upho lattices

Uniform sequences of supersolvable geometric lattices

These examples can be generalized. Let L0, L1, . . . be a uniform sequence
of supersolvable geometric lattices, such as Ln = Bn or Ln = Πn+1.
Think: a sequence of graded lattices “nicely embedded in one another.”

The Whitney numbers of 2nd/1st kind for these Ln are

F (Li ; x) =
i∑

j=0

V (i , j)x i−j and χ(Li ; x) =
i∑

j=0

v(i , j)x i−j

Theorem (Dowling 1973, Stanley 1974)

V (i , j) = hi−j(a1, . . . , aj+1) and v(i , j) = (−1)i−jei−j(a1, . . . , ai ),

where hk and ek denote the complete homogeneous and elementary
symmetric polynomials, and ai = #{atoms s ∈ Li} −#{atoms s ∈ Li−1}.
In particular, χ(Ln; x) = (1− a1x)(1− a2x) · · · (1− anx).
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Examples of cores of upho lattices

Upho lattices as limits of sequences of finite lattices

We have rank-preserving embeddings ιi : Li → Li+1, so let L∞ =
⋃∞

n=1 Ln,

and for any k ≥ 1, let L(k)
∞ = {p ∈ L∞ : min{n : p ∈ Ln} < ρ(p) + k}.

With Ln = Bn or Ln = Πn+1, these give the L we saw before.

Theorem (H. 2024)

For each k ≥ 1, L(k)
∞ is an upho lattice with core Lk .

Beyond the Boolean and partition lattices, other examples of uniform
sequences of supersolvable geometric lattices are:

Ln = lattice of subspaces of Fn
q, for any prime power q;

Ln = intersection lattice of Type Bn Coxeter arrangement;

Ln = Qn(G ), the Dowling lattice associated to any finite group G .

So, these finite graded lattices are all cores.
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Examples of cores of upho lattices

Monoid basics

A monoid is a set M with an associative product · and identity element 1.

The free monoid on a set S is the collection of words over alphabet S ,
with product concatenation and identity the empty word.

A presentation of a monoid M is a way of writing M = ⟨S | R⟩ as the
quotient of the free monoid on S by the relations in R. We want M having
S finite and R homogeneous (relations equate words of the same length).

For example, consider M = ⟨a, b | ab = ba⟩:

1

a b

aa ab bb

aaa aab abb bbb

Here we depict the partial order ≤L of left divisibility on M: x ≤L y if
there is some z ∈ M such that xz = y .
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Examples of cores of upho lattices

Upho lattices from monoids

M is left cancellative if xy = xz implies y = z for every x , y , z ∈ M.

Lemma (c.f. Gao et al. 2022)

Let M = ⟨S | R⟩ be a homogeneously finitely generated monoid. If M is
left cancellative, then L = (M,≤L) is an upho poset. If moreover every
x , y ∈ M have a least common right multiple, then L is an upho lattice.

For example, this lemma applies to M = ⟨a, b, c | ab = bc = ca⟩:

1

a b c

ac aa bb ab ba cc cb

acb acc aaa aab aac bbb bba aba bac baa ccc abb ccb cba cbb
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Examples of cores of upho lattices

Garside monoids and Coxeter groups

Garside monoids are both left and right cancellative, and have both left
and right least common multiplies for every pair of elements.

The major examples of Garside monoids come from finite Coxeter groups.
A Coxeter group has presentation W = ⟨s1, . . . , sr : s2i = 1 = (si sj)

mij ⟩,
like the symmetric group Sn with adjacent transpositions si = (i , i + 1).

Now fix a finite Coxeter group W .

The classical braid monoid M = ⟨s1, . . . , sr :
mij︷ ︸︸ ︷

si sjsi · · · =
mij︷ ︸︸ ︷

sjsi sj · · ·⟩ is a
Garside monoid. It gives an upho lattice with core the weak order of W .

Let T = {swi : i = 1, . . . , r ,w ∈ W }, where gh = h−1gh is conjugation.
The dual braid monoid M = ⟨T : ts = sts⟩ is a Garside monoid as well.
It gives an upho lattice with core the noncrossing partition lattice of W .
The example on the last slide was the dual braid monoid of W = S3.
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Non-examples of cores of upho lattices

Section 4

Non-examples of cores of upho lattices
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Non-examples of cores of upho lattices

Core obstructions: characteristic polynomial and structural

How can we show that a finite graded lattice L cannot arise as a core?

There are restrictions on the characteristic polynomials of cores:

Lemma

If L is the core of an upho lattice, all coefficients of χ(L; x)−1 are positive.

This follows immediately from the fact that χ(L; x)−1 = F (L; x) for a core.

There are also structural obstructions to being a core:

Lemma

Let L be the core of an upho lattice. Let x ∈ L \ {0̂, 1̂} and let y1, . . . , yk
be the elements covering x . Then there is a rank-preserving embedding of
the interval [x , y1 ∨ · · · ∨ yk ] into L.

This says L must already be “partly self-similar” for it to be a core.
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Non-examples of cores of upho lattices

Face lattices of polytopes

Let P be a (convex) polytope. The face lattice L(P) is the poset of
faces of P ordered by containment. It is always a finite graded lattice.

If P is an n-dimensional simplex, then L(P) = Bn+1, which we know is a
core. So we can ask: which other face lattices of polytopes are cores?
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Non-examples of cores of upho lattices

Face lattices that are not cores

Let P be the octahedron. Then χ(L(P); x) = 1− 6x + 12x2 − 8x3 + x4

and [x13]χ(L(P); x)−1 = −123704, where [xn]F (x) means the coefficient
of xn in the power series F (x). So its face lattice L(P) is not a core.

More generally, it can be shown using the structural obstruction that for
any n ≥ 3, L(P) is not a core for P the n-dimensional cross polytope,
which is the convex hull of all permutations of (±1, 0, . . . , 0) ∈ Rn.

Similarly, it can be shown that for any n ≥ 3, L(P) is not a core when P is
the n-dimensional hypercube, which is the dual to the cross polytope.
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Non-examples of cores of upho lattices

Bond lattices of graphs

Let G be a connected, simple graph on vertex set [n]. A partition π of [n]
is G -connected if the restriction of G to each block of π is connected.
The bond lattice L(G ) is the restriction of Πn to G -connected partitions.

1 2 3

1 2 3 1 2 3

1 2 3

The bond lattice of a graph is always a finite graded lattice, and the
chromatic polynomial of G is χ(G ; x) = xn · χ(L(G ); x−1).

For G = Kn complete graph we have L(Kn) = Πn, which we know is a
core. So we can ask: which other bond lattices of graphs are cores?
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Non-examples of cores of upho lattices

Bond lattices that are not cores

Consider a cycle graph C4 on 4 vertices: χ(L(C4); x) = 1−4x +6x2−3x3

and [x7]χ(L(C4); x)
−1 = −80. So the bond lattice L(C4) is not a core.

1

23

4

5 n

Cn

It can be shown using the structural obstruction that for any n ≥ 4, the
bond lattice L(Cn) of the cycle graph Cn on n vertices is not a core.

Even more generally, it can be shown that the lattice of flats of the
uniform matroid U(k, n) is not a core for any 2 < k < n.
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Further directions

Section 5

Further directions
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Further directions

Number of ways to realize a core

A natural question suggested by our investigation is:

Question

For a finite lattice L, let κ(L) be the number of upho lattices with core L.
How does κ(L) behave?

In work in progress joint with Joel Lewis we are pursuing this question.

On the one hand, we can show that κ(L) is finite if L has no nontrivial
automorphisms, suggesting it may be finite for all L.

On the other hand, we can show that κ(L) is unbounded even when
restricted to lattices of rank two.
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Further directions

Distributive and modular upho lattices

It is easy to show that the only distributive upho lattices are Nn for n ≥ 1.

Modular upho lattices are more interesting. Fix n ≥ 1 and a prime p.
Subgroups of Zn of index a power of p give a modular upho lattice:

(
1 0
0 1

)

(
2 0
0 1

) (
1 0
1 2

) (
1 0
0 2

)

(
4 0
0 1

) (
2 0
1 2

) (
1 0
1 4

) (
2 0
0 2

) (
1 0
3 4

) (
1 0
2 4

) (
1 0
0 4

)

(
8 0
0 1

) (
4 0
1 2

) (
2 0
3 4

) (
4 0
0 2

) (
2 0
1 4

) (
1 0
1 8

) (
2 0
5 8

) (
2 0
2 4

) (
1 0
7 8

) (
1 0
3 8

) (
1 0
2 8

) (
2 0
0 4

) (
1 0
6 8

) (
1 0
4 8

) (
1 0
0 8

)

n = 2
p = 2

Stanley conjectured that (essentially) all modular upho lattices come from
commutative algebra like this example.
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Thank you!
these slides are on my website:

https://www.samuelfhopkins.com/docs/upho_talk.pdf

and the relevant papers are:

S. Hopkins. “A note on Möbius functions of upho posets.” Electron.
J. Combin. 29(2), 2022. arXiv:2202.12103

S. Hopkins. “Upho lattices I: examples and non-examples of cores.”
Preprint, 2024. arXiv:2407.08013

S. Hopkins and J. Lewis. “Upho lattices II: ways of realizing a core.”
In preparation, 2024+.
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